skip to main content


Search for: All records

Creators/Authors contains: "Anderson, Suzanne P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    At the inaugural Frontiers in Hydrology Meeting in San Juan, Puerto Rico in the summer of 2022, the Hydrology Section organized a poster session and invited our 2020 and 2021 Classes of AGU Fellows, with the initial goal of both celebrating their careers as well as to provide an opportunity for an informal exchange and connection between the section's early career members and our more senior and established scientists and engineers. Due to the challenges of time zones, virtual poster presentations and other logistics, the formal poster session was adjourned but continued as a hybrid “meet‐up” with six of our Section's Fellows (Suzanne Anderson, Paul Brooks, Aaron Packman, Remko Uijlenhoet, Andrew Western, and Xubin Zeng) from around the world. As you will see, what started as an informal chat quickly took deep dives into pressing issues in our section and science in general, including thoughts on how our community values (or in some cases doesn't value) multi‐ and interdisciplinary accomplishments, critiques of our system of rewards and awards including how we assess publication impacts and finally, a frank and honest discussion of our current efforts to diversify our community and where/why are we still failing. We hope that by sharing this open and impromptu dialogue that these discussions can expand to our entire community, and to encourage future Fellows exchanges such as this to reach our entire community of scientists and engineers.

     
    more » « less
  2. Abstract. The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth's materials are unweathered. The network of nine CZ observatories supported by the US National Science Foundation has made advances in three broad areas of CZ research relating to the co-evolving surfaces. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response, in turn, impacts aboveground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences aboveground ecosystems. Third, several new mechanistic models now provide quantitative predictions of the spatial structure of the subsurface of the CZ.
    Many countries fund critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each US observatory has succeeded in (i) synthesizing research across disciplines into convergent approaches; (ii) providing long-term measurements to compare across sites; (iii) testing and developing models; (iv) collecting and measuring baseline data for comparison to catastrophic events; (v) stimulating new process-based hypotheses; (vi) catalyzing development of new techniques and instrumentation; (vii) informing the public about the CZ; (viii) mentoring students and teaching about emerging multidisciplinary CZ science; and (ix) discovering new insights about the CZ. Many of these activities can only be accomplished with observatories. Here we review the CZO enterprise in the United States and identify how such observatories could operate in the future as a network designed to generate critical scientific insights. Specifically, we recognize the need for the network to study network-level questions, expand the environments under investigation, accommodate both hypothesis testing and monitoring, and involve more stakeholders. We propose a driving question for future CZ science and a hubs-and-campaigns model to address that question and target the CZ as one unit. Only with such integrative efforts will we learn to steward the life-sustaining critical zone now and into the future.

     
    more » « less
  3. Abstract

    Generalizable relationships for how subdaily rainfall statistics imprint into runoff statistics are lacking. We use the Colorado Front Range, known for destructive rainfall‐triggered floods and landslides, to assess whether orographic patterns in runoff generation are a direct consequence of rainstorm climatology. Climatological analysis relies on a dense network of tipping‐bucket rain gauges and gridded precipitation frequency estimates from the National Oceanic and Atmospheric Administration to evaluate relationships among subdaily rainfall statistics, topography, and flood frequency throughout the South Platte River basin. We find that event‐scale rainfall statistics only weakly depend on elevation, suggesting that orographic gradients in runoff “extremes” are not simply a consequence of rainfall patterns. In contrast, bedrock exposure strongly varies with elevation in a way that plausibly explains enhanced runoff generation at lower elevations via reduced water storage capacity. These findings are suggestive of feedbacks between bedrock river evolution and hillslope hydrology not typically included in models of landscape evolution.

     
    more » « less
  4. Abstract

    Despite a multitude of small catchment studies, we lack a deep understanding of how variations in critical zone architecture lead to variations in hydrologic states and fluxes. This study characterizes hydrologic dynamics of 15 catchments of the U.S. Critical Zone Observatory (CZO) network where we hypothesized that our understanding of subsurface structure would illuminate patterns of hydrologic partitioning. The CZOs collect data sets that characterize the physical, chemical, and biological architecture of the subsurface, while also monitoring hydrologic fluxes such as streamflow, precipitation, and evapotranspiration. For the first time, we collate time series of hydrologic variables across the CZO network and begin the process of examining hydrologic signatures across sites. We find that catchments with low baseflow indices and high runoff sensitivity to storage receive most of their precipitation as rain and contain clay‐rich regolith profiles, prominent argillic horizons, and/or anthropogenic modifications. In contrast, sites with high baseflow indices and low runoff sensitivity to storage receive the majority of precipitation as snow and have more permeable regolith profiles. The seasonal variability of water balance components is a key control on the dynamic range of hydraulically connected water in the critical zone. These findings lead us to posit that water balance partitioning and streamflow hydraulics are linked through the coevolution of critical zone architecture but that much work remains to parse these controls out quantitatively.

     
    more » « less